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MME 6106  Advanced Thermodynamics 

Fundamental Principles and Equations for a Closed System 
Ref:  C H P Lupis, Chemical Thermodynamics of Materials, North-Holland, 1983, Chapter I. 

Lecture 04 

 

 

4.   Application to the Stability of Phases for One-Component System 

4.1   The Gibbs Free Energy Function 

At any given temperature T and pressure P, a system is in equilibrium when it has reached the 

minimum value of its Gibbs free energy. Thus, the phase  is more stable than the phase  if G

 < G


. 

It should, however, be noted that if G

 < G


 at any T and P, the inequality may be reversed at some 

other temperature T’ and pressure P’. So it is important to know the temperature and pressure 

dependences of the Gibbs free energy of a phase. 

Unlike S = S(T) and H = H(T), the temperature dependence of G does not have any discontinuity in its 

values for phase transformations:  at the melting point G
s
 = G

l
, and at the boiling point G

l
 = G

g
. 

The slopes of the curves are always negative, since dG = -SdT + VdP, and 

(
𝜕𝐺

𝜕𝑇
)

𝑃
=  −𝑆 < 0                 (4.1) 

The curvatures are negative also from the fact that 

(
𝜕2𝐺

𝜕𝑇2
)

𝑃

=  − (
𝜕𝑆

𝜕𝑇
)

𝑃
=  − 

𝐶𝑃

𝑇
 < 0                (4.2) 

 

Temperature dependence of the Gibbs free energy of Zn in the solid, liquid and gas phases.  

The solid lines correspond to the stable phases and the dashed lines to the metastable phases. 
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The change in the slope of G at a transformation temperature corresponds to the S of this 

transformation. 

At any transition temperature 

ΔGα→β = 0 =   ΔHα→β −  Tα→βΔSα→β 

ΔHα→β =  Tα→βΔSα→β             (4.3) 

This expression is useful in estimating heats of melting or heats of vaporisation knowing the melting 

or boiling temperature, since the entropies of melting and vaporisation are often readily estimated. 

To study the pressure dependence of the Gibbs free energy, we note that 

(
𝜕𝐺

𝜕𝑃
)

𝑇
=  𝑉         (4.4) 

and 

(
𝜕2𝐺

𝜕𝑃2
)

𝑃

=  (
𝜕𝑉

𝜕𝑃
)

𝑇
=  − 𝑉𝛽                  (4.5) 

Thus, the plot G vs P shows curves of positive slope but negative curvatures. High pressures favours 

phases of low volumes, i.e., of high density. 

 

 

Pressure dependence of Gibbs free energy of carbon in graphite and diamond structures 

 

4.2   Clausius-Clapeyron equation 

The phases  and  coexist when G

 = G


.  Then it can be found that 

dT

dP
 =   

∆Vα→β

∆Sα→β
 =   

Tα→βΔVα→β

∆Hα→β
              (4.6) 

This is known as the Clausius-Clapeyron equation. 

The value of (dT/dP) for the fusion of silver is of the order of 0.004 K/atm. The value is substantially 

similar for other elements. So the melting temperatures are not significantly affected by minor 

variations in pressure. 

The changes in boiling temperatures are much larger than changes in melting temperatures since the 

corresponding V is more than four orders of magnitude higher (V
g
 is 22414 cc/mol at 273 K). For 

example, in the case of water at P=1 atm, dT/dP is 28.01 K/atm. 
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Problem: 

Determine the rate of change in melting and boiling temperatures of silver with pressure at their 

transformation temperatures. Given data:  TF = 1234 K, Tb = 2470 K, VS = 10.9 cc/mol, VL = 11.3 cc/mol,    

VG = 22414 cc/mol at 273 K, H
F
 = 2855 cal/mol, H

G
 = 61510 cal/mol. 

Solution 

Fusion of Silver: 

𝑑𝑇

𝑑𝑃
=  

𝑇𝐹  ∆𝑉𝑆→𝐿

∆𝐻𝐹  =   
(1234 𝐾) (0.4 𝑐𝑐/𝑚𝑜𝑙)

2855 𝑐𝑎𝑙/𝑚𝑜𝑙
 =   0.17 𝐾 𝑐𝑐/𝑐𝑎𝑙 

=   (0.17 
𝐾 𝑐𝑐

𝑐𝑎𝑙
) (

1.987 𝑐𝑎𝑙

82.06 𝑐𝑐 𝑎𝑡𝑚
)  =   0.004 𝐾/𝑎𝑡𝑚 

Boiling of Silver: 

Volume of silver gas at 2470 K  =  (
2470

273
) (22414

𝑐𝑐

𝑚𝑜𝑙
) = 202793 𝑐𝑐/𝑚𝑜𝑙  

𝑑𝑇

𝑑𝑃
=  

𝑇𝑏 ∆𝑉𝐿→𝐺

∆𝐻𝐺
 =   

(2470 𝐾) (202793 − 11.3 𝑐𝑐/𝑚𝑜𝑙)

61510 𝑐𝑎𝑙/𝑚𝑜𝑙
 =   8142.9 𝐾 𝑐𝑐/𝑐𝑎𝑙 

=   (8142.9 
𝐾 𝑐𝑐

𝑎𝑡𝑚
) (

1.987 𝑐𝑎𝑙

82.06 𝑐𝑐 𝑎𝑡𝑚
)  =   197.2 𝐾/𝑎𝑡𝑚 

 

Considering V
g
 >> V

s or l
, the Clausius-Clapeyron equation for g equilibrium can be expressed as 

dT

dP
 =  

Tα→gΔVg

∆Hα→g
=   

RT2

P ∆Hα→g
                 (4.7) 

dP

P
 =   

∆Hα→g

RT2
 dT        (4.8) 

If we further assume that the heat of vaporisation is not a strong function of pressure and temperature, 

then Eq.(4.8) is easily integrated and yields 

ln P  =   
∆Hα→g

R
 (

1

Tα→g
−

1

T
)       (4.9) 
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Solution to Problems 

Chapter 1 / Lupis 

 

12. The van der Waals equation of state for an imperfect gas is 

(𝑃 +
𝑎

𝑉2
) (𝑉 − 𝑏) = 𝑅𝑇 

 where a and b are two constants independent of temperature. 

 (a) Calculate the expressions of (P/T)V, (E/V)T, and of the coefficient of compressibility  

 = - (1/V) (V/P)T. 

 (b) Assume now that a = 0 (in this case the equation of state sometimes bears the name of 

Clausius) and calculate the coefficient of thermal expansion , (H/P)T, and the difference   

CP – CV = 
2
TV/.  For b = 22 cm

3
, calculate the change in the molar enthalpy (in cal) of the 

gas when its pressure is changed from 1 to 1000 atm. 

 

Solution 

The van der Waals equation of state of an imperfect gas is given as 

(𝑃 +
𝑎

𝑉2
) (𝑉 − 𝑏) = 𝑅𝑇 

𝑃 +
𝑎

𝑉2
 =   

𝑅𝑇

𝑉 − 𝑏
 

𝑃 =   
𝑅𝑇

𝑉 − 𝑏
 − 

𝑎

𝑉2
 

(a) 

(
𝜕𝑃

𝜕𝑇
)

𝑉
 =   

𝑅

𝑉 − 𝑏
 =   

1

𝑇
[𝑃 +

𝑎

𝑉2
] 

Since  dE  =  TdS – PdV, 

(
𝜕𝐸

𝜕𝑉
)

𝑇
 =   𝑇 (

𝜕𝑆

𝜕𝑉
)

𝑇
−  𝑃 

(
𝜕𝐸

𝜕𝑉
)

𝑇
 =   𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
−  𝑃             (𝑀𝑎𝑥𝑤𝑒𝑙𝑙′𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

(
𝜕𝐸

𝜕𝑉
)

𝑇
 =   𝑇 

1

𝑇
[𝑃 +

𝑎

𝑉2
] −  𝑃 =   

𝑎

𝑉2
 

Now the given equation of state 

(𝑃 +
𝑎

𝑉2
) (𝑉 − 𝑏) = 𝑅𝑇 

Differentiating this with respect to P at constant T, we get 

(𝑉 − 𝑏) [1 −
2𝑎

𝑉3
 (

𝜕𝑉

𝜕𝑃
)

𝑇
]  +  (𝑃 +

𝑎

𝑉2
) (

𝜕𝑉

𝜕𝑃
)

𝑇
= 0 

[−(𝑉 − 𝑏)
2𝑎

𝑉3
 + 𝑃 +

𝑎

𝑉2
] (

𝜕𝑉

𝜕𝑃
)

𝑇
 + (𝑉 − 𝑏) = 0 

[−
2𝑎

𝑉2
 +  

2𝑎𝑏

𝑉3
 +  𝑃 +

𝑎

𝑉2
] (

𝜕𝑉

𝜕𝑃
)

𝑇
=  −(𝑉 − 𝑏) 
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(
𝜕𝑉

𝜕𝑃
)

𝑇
=  −

(𝑉 − 𝑏)

𝑃 −  
𝑎

𝑉2  +  
2𝑎𝑏

𝑉3

 

∴   𝛽 =  −
1

𝑉
 (

𝜕𝑉

𝜕𝑃
)

𝑇
=  

(𝑉 − 𝑏)

𝑉 (𝑃 −  
𝑎

𝑉2  +  
2𝑎𝑏

𝑉3 )
 =   

(𝑉 − 𝑏)

𝑃𝑉 − 
𝑎

𝑉
 + 

2𝑎𝑏

𝑉2

 

 

(b) 

Since  a =  0, the given equation of state becomes 

𝑃(𝑉 − 𝑏) = 𝑅𝑇 

𝑉 − 𝑏 =   
𝑅𝑇

𝑃
 

(
𝜕𝑉

𝜕𝑇
)

𝑃
 =   

𝑅

𝑃
  

Now the coefficient of thermal expansion 

𝛼 =  
1

𝑉
 (

𝜕𝑉

𝜕𝑇
)

𝑃
=  

𝑅

𝑉𝑃
 =   

1

𝑉
 (

𝑉 − 𝑏

𝑇
) 

∴  𝛼 =  
1

𝑇
 (

𝑉 − 𝑏

𝑉
)  =   

1

𝑇
 (1 − 

𝑏

𝑉
) 

Since  dH  =  TdS + VdP 

(
𝜕𝐻

𝜕𝑃
)

𝑇
 =   𝑇 (

𝜕𝑆

𝜕𝑃
)

𝑇
+  𝑉 

(
𝜕𝐻

𝜕𝑃
)

𝑇
 =  − 𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
+  𝑉            (𝑀𝑎𝑥𝑤𝑒𝑙𝑙′𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

(
𝜕𝐻

𝜕𝑃
)

𝑇
 =  − 𝑇 (

𝑅

𝑃
) +  𝑉 =  − (𝑉 − 𝑏)  +  𝑉 =   𝑏 

Now, we have seen previously in (a) that 

𝛽 =  
(𝑉 − 𝑏)

𝑃𝑉 −  
𝑎

𝑉
 +  

2𝑎𝑏

𝑉2

 

Putting  a = 0, we get 

𝛽 =  
𝑉 − 𝑏

𝑃𝑉
 

Then 

𝐶𝑃 − 𝐶𝑉  =   
𝑇𝑉𝛼2

𝛽
 

𝐶𝑃 − 𝐶𝑉  =   𝑇𝑉 (
𝑅

𝑉𝑃
)

2

(
𝑃𝑉

𝑉 − 𝑏
)  =   

𝑇𝑅2

𝑃 (𝑉 − 𝑏)
 

𝐶𝑃 − 𝐶𝑉  =   
𝑇𝑅2

𝑃
 (

𝑃

𝑅𝑇
)  =   𝑅 
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Now, given that,  b = 22 cc.  Then 

(
𝜕𝐻

𝜕𝑃
)

𝑇
=  𝑏 =   22 𝑐𝑐 

∴    𝑑𝐻 =   22 𝑑𝑃 

∆𝐻 =   ∫ 22 𝑑𝑃
100

1

 =   22 (100 − 1) 𝑐𝑐-𝑎𝑡𝑚/𝑚𝑜𝑙 

∆𝐻 =   (2178 
𝑐𝑐-𝑎𝑡𝑚

𝑚𝑜𝑙-𝐾
) (

1.987 𝑐𝑎𝑙

82.06 𝑐𝑐-𝑎𝑡𝑚
) =   52.73 𝑐𝑎𝑙/𝑚𝑜𝑙 

 

 

14. Phase a of a species A transforms in phase b at 55 K and 1 atm.  The heat capacities of A in the 

structures a and b are, respectively, 𝐶𝑃
0𝛼 = 2.1x10−5𝑇3  and 𝐶𝑃

0𝛽
= 2.1x10−5𝑇3   cal/K mol.  

Calculate the enthalpy and entropy of transformation at 55 K and 0 K, at 1 atm. 

 

Solution 

Entropy of any substance at temperature T is 

𝑆𝑇  =   𝑆0 +  ∫
𝐶𝑃

𝑇

𝑇

0

𝑑𝑇 

So the change in entropy for    transformation 

∆𝑆55
𝛼→𝛽 =   𝑆55

𝛽 − 𝑆55
𝛼 

∆𝑆55
𝛼→𝛽  =   [𝑆0

𝛽
+ ∫

𝐶𝑃
𝛽

𝑇

55

0

𝑑𝑇]  − [𝑆0
𝛼 + ∫

𝐶𝑃
𝛼

𝑇

55

0

𝑑𝑇] 

Given data:  𝐶𝑃
0𝛼 = 2.1x10−5𝑇3,  𝐶𝑃

0𝛽
= 5.7x10−5𝑇3 ;  𝑆0

𝛼 = 0 ;  𝑆0
𝛽

= 0  cal/mol-K. 

Then 

∆𝑆55
𝛼→𝛽  =   [0 +  

5.7x10−5

3
(553)]  −  [0 +  

2.1x10−5

3
(553)] = 2.0 𝑐𝑎𝑙/𝑚𝑜𝑙-𝐾 

 

The change in free energy for    transformation 

∆𝐺𝛼→𝛽 = 0 =   ∆𝐻𝛼→𝛽 −  𝑇𝛼→𝛽∆𝑆𝛼→𝛽 

∴  ∆𝐻𝛼→𝛽 =  𝑇𝛼→𝛽∆𝑆𝛼→𝛽 

Then, at 55 K, the change in enthalpy for    transformation 

∴  ∆𝐻55
𝛼→𝛽 =  𝑇𝛼→𝛽∆𝑆𝛼→𝛽  =   55 (2.0) =   110.0 𝑐𝑎𝑙/𝑚𝑜𝑙 

 

Now, at 0 K, 

∆𝑆0
𝛼→𝛽 =   𝑆0

𝛽 − 𝑆0
𝛼 = 0 

Since   𝑑(∆𝐻) = ∆𝐶𝑃𝑑𝑇  and   ∆𝐶𝑃
𝛼→𝛽 =   𝐶𝑃

𝛽 − 𝐶𝑃
𝛼 ,  
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we have 

∆𝐻55
𝛼→𝛽  =   ∆𝐻0

𝛼→𝛽 +  ∫ ∆𝐶𝑃
𝛼→𝛽

55

0

𝑑𝑇 

110.0 =   ∆𝐻0
𝛼→𝛽 +  ∫ (3.6x10−5 𝑇3)

55

0

𝑑𝑇 

∴   ∆𝐻0
𝛼→𝛽 =  110.0 − 

3.6x10−5

4
(554)  =   27.64 𝑐𝑎𝑙/𝑚𝑜𝑙 

 

 

 

 

 

 

 


